whatsapp

whatsApp

Have any Questions? Enquiry here!
☎ +91-9972364704 LOGIN BLOG
× Home Careers Contact
Back
Applications of Machine Learning & AI in Mechanical Engineering
Applications of Machine Learning & AI in Mechanical Engineering

Applications of AI & ML in Manufacturing 

Manufacturers are always keen to adopt technology that improves product quality, reduces time-to-market, and is scalable across their units. Artificial Intelligence, Machine Learning, and Robotic Process Automation are helping manufacturers fine-tune product quality and optimize operation. 

Predicting Mechanical Failure 

By continuously monitoring data (power plant, manufacturing unit operations) and providing them to smart decision support systems, manufacturers can predict the probability of failure. Predictive maintenance is an emerging field in industrial applications that helps in determining the condition of in-service equipment to estimate the optimum time of maintenance. 

 

 

ML-based predictive maintenance saves cost and time on routine or preventive maintenance. Apart from industrial applications, predicting mechanical failure is also beneficial for industries like the airline industry. Airlines need to be extremely efficient in operations and delays of even a few minutes can result in heavy penalties. Situations like delays in taxing will result in severe fines for airlines, the primary reason for taxing delays results from aeroplanes experiencing mechanical failures or environmental situations that result in cascading delays. This is directly related to sequential data. For making sense of sequential data, we can use machine learning models to predict such events. 

Reducing Test and Calibration Time 

Data science-based analytics can help manufacturers with the prediction of calibration and test results to reduce the testing time while production. 

For example – Bosch, a German multinational engineering and technology company used AI techniques like early prediction from process parameters, descriptive analytics for root-cause analysis, and component failures prediction to avoid unscheduled machine downtimes and achieved 35% reduction in test and calibration time

 

 

The increasing demand of AI Engineers 

Manufacturers have been using distributed and supervisory control systems to improve process efficiencies in their plants. However, it requires rigorous monitoring and relies on the experience, intuition, and judgment of the operator. 

 

AI is capable of improving and standardizing the knowledge and experience of experts to make decision support systems effective. Industries are keen on developing in-house AI capabilities and that’s why the demand for mechanical engineers with knowledge of AI is rapidly increasing. Currently, organizations are looking out for process and automation engineers, data scientists, IT & Data engineers and AI creation experts from mechanical and electronics background. 

 

Important Terminologies Related to AI and ML 

Types of Data 

Data is any relevant information that is available related to the application you’re building using ML. Usually, we categorize the data into two sets – one, which is used to train the ML model; and two, which we use to test if the algorithm (ML model) is working fine or not. 

  1. Training Data: This data set is a sample data set that comprises input and/or output values for training the ML model. 

  1. Validation Data: The validation data is the set of sample data kept aside to test the effectiveness of the algorithm/ML model. It gives an unbiased estimate of the model’s skills and is required for comparing/selecting between final models. 

  1. Test Data: It is used to evaluate the final model without any biases. The terms- validation data and test data are often used interchangeably. 

 

 

Fundamental Techniques of Machine Learning 

There are three fundamental techniques of Machine learning – structured, unstructured, and reinforced learning. 

  1. Structured: Structured learning is suitable when we are aware of both – inputs and outcomes. 

  1. Unstructured: This type of learning is useful for complex problems where we don’t know what the right answer is. It tries to figure out what the input is by studying the input values. This ML model requires an enormous amount of input data before devising an algorithm to solve a given problem. 

 

  1. Reinforcement learning: Whenever there are consequences to the inaccurate outcomes, reinforced learning is used. It penalizes the wrong outcome and rewards the correct solution. This type of machine learning is useful for designing driverless cars. 

Quality of Prediction 

After training a machine, we need to determine its effectiveness based on the quality of the predictions it makes.  

 

 

  1. Overfitting: When the ML model tries to predict the outputs for a given set of inputs in a very vigorous way, in other words - it is biased to the input and gives incorrect output for even a slight variation in the input value, it is known as overfitting

Underfitting: It is a situation when an application can neither model the training data nor generalize to new data. It is mainly due to inefficient algorithms. The only remedy to underfitting is trying alternative machine learning algorithms. 

Note: Find the best solution for electronics components and technical projects  ideas 

keep in touch with our social media links as mentioned below 

Mifratech websites : https://www.mifratech.com/public/ 

Mifratech facebook : https://www.facebook.com/mifratech.lab 

mifratech instagram : https://www.instagram.com/mifratech/ 

mifratech twitter account : https://twitter.com/mifratech 

 

Contact for more information : mifratech@gmail.com / 080-73744810 / 9972364704

Popular Coures