Fake news needs no introduction. In today’s connected world, it’s become ridiculously easy to share fake news over the internet. Every once in a while, you’ll see false information being spread online from unauthorized sources that not only cause problems to the people targeted but also has the potential to cause widespread panic and even violence.
To curb the spread of fake news, it’s crucial to identify the authenticity of information, which can be done using this data science project. You can use Python and build a model with TfidfVectorizer and PassiveAggressiveClassifier to separate the real news from the fake one. Some Python libraries best suited for this project are pandas, NumPy and scikit-learn. For the data set, you can use News.csv.
A type of yellow journalism, fake news encapsulates pieces of news that may be hoaxes and is generally spread through social media and other online media. This is often done to further or impose certain ideas and is often achieved with political agendas. Such news items may contain false and/or exaggerated claims, and may end up being viralized by algorithms, and users may end up in a filter bubble.
TF (Term Frequency): The number of times a word appears in a document is its Term Frequency. A higher value means a term appears more often than others, and so, the document is a good match when the term is part of the search terms.
IDF (Inverse Document Frequency): Words that occur many times a document, but also occur many times in many others, may be irrelevant. IDF is a measure of how significant a term is in the entire corpus.
The TfidfVectorizer converts a collection of raw documents into a matrix of TF-IDF features.
Passive Aggressive algorithms are online learning algorithms. Such an algorithm remains passive for a correct classification outcome, and turns aggressive in the event of a miscalculation, updating and adjusting. Unlike most other algorithms, it does not converge. Its purpose is to make updates that correct the loss, causing very little change in the norm of the weight vector.
To build a model to accurately classify a piece of news as REAL or FAKE.
This advanced python project of detecting fake news deals with fake and real news. Using sklearn, we build a TfidfVectorizer on our dataset. Then, we initialize a PassiveAggressive Classifier and fit the model. In the end, the accuracy score and the confusion matrix tell us how well our model fares.
A type of yellow journalism, fake news encapsulates pieces of news that may be hoaxes and is generally spread through social media and other online media. This is often done to further or impose certain ideas and is often achieved with political agendas. Such news items may contain false and/or exaggerated claims, and may end up being viralized by algorithms, and users may end up in a filter bubble.
TF (Term Frequency): The number of times a word appears in a document is its Term Frequency. A higher value means a term appears more often than others, and so, the document is a good match when the term is part of the search terms.
IDF (Inverse Document Frequency): Words that occur many times a document, but also occur many times in many others, may be irrelevant. IDF is a measure of how significant a term is in the entire corpus.
The TfidfVectorizer converts a collection of raw documents into a matrix of TF-IDF features.
Passive Aggressive algorithms are online learning algorithms. Such an algorithm remains passive for a correct classification outcome, and turns aggressive in the event of a miscalculation, updating and adjusting. Unlike most other algorithms, it does not converge. Its purpose is to make updates that correct the loss, causing very little change in the norm of the weight vector.
To build a model to accurately classify a piece of news as REAL or FAKE.
This advanced python project of detecting fake news deals with fake and real news. Using sklearn, we build a TfidfVectorizer on our dataset. Then, we initialize a PassiveAggressive Classifier and fit the model. In the end, the accuracy score and the confusion matrix tell us how well our model fares.
Note : Find the best solution for electronics components and technical projects ideas
keep in touch with our social media links as mentioned below
Mifratech websites : https://www.mifratech.com/public/
Mifratech facebook : https://www.facebook.com/mifratech.lab
mifratech instagram : https://www.instagram.com/mifratech/
mifratech twitter account : https://twitter.com/mifratech
Contact for more information : [email protected] / 080-73744810 / 9972364704